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Pattern formation in intracavity second-harmonic generation

C. Etrich, U. Peschel, and F. Lederer
Institut für Festkörpertheorie und Theoretische Optik, Friedrich-Schiller-Universita¨t Jena, Max-Wien-Platz 1, 07743 Jena, Germany

~Received 2 April 1997!

We consider transverse effects in a planar resonator with a quadratically nonlinear medium where the
incident field is at the fundamental frequency. The resonator is assumed to be resonant for both the fundamen-
tal and second harmonics. Different scenarios of destabilization of the plane-wave solutions are investigated in
dependence on the driving field and the detunings from the resonances. Numerical simulations demonstrate the
existence of dynamical and stationary patterns.@S1063-651X~97!11110-2#

PACS number~s!: 42.65.Sf, 42.65.Ky, 42.65.Pc
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I. INTRODUCTION

Planar resonators filled with nonlinear media are ba
configurations in nonlinear optics. Due to their inherent fe
back, they exhibit dynamical instabilities leading to fund
mental spatiotemporal effects such as bistability, s
oscillations, or pattern formation@1–4#. Planar resonators
provide a considerable field enhancement within the ca
that reduces the power requirements as far as the experi
tal verification of above-mentioned effects is concerned.

Various types of nonlinearities, which manifest them
selves by the material placed in the cavity, were conside
~see, e.g.,@1–4# and references therein!. Most extensively
studied was the local and instantaneous cubic~Kerr! nonlin-
earity @1–3#. In the defocusing case optical plane-wave
stability can be observed@5#. In the focusing case the fiel
tends to collapse in two-dimensional geometries. To ob
stationary patterns a saturation has to be included into
model @6#.

In the case of a second-order nonlinearity phase and
plitude modulation are induced by the interaction of the fu
damental and second-harmonic waves. In the limiting cas
a weak second harmonic the problem can be reduced to
evolution of the fundamental with an effective cubic nonli
earity. Thus similar effects are expected to be found. But
second field introduces additional degrees of freedom
new effects evolve. For instance, the nonlocal interact
saturates for strong focusing due to the enhanced diffrac
of the second harmonic and no collapse occurs even for f
space propagation@7#. Furthermore, the competition betwee
the fundamental and second harmonics may give rise to
ditional dynamical instabilities~Hopf bifurcation! @8#.

The aim of this work is to study the instabilities that occ
in a planar resonator in the course of second-harmonic g
eration and their consequences. In contrast to the op
parametric oscillator~OPO! @4,9–11#, we focus on incident
fields at the fundamental frequency. Stable states are
characterized by mutually locked solutions at both frequ
cies~e.g., dichromatic patterns!. For the fundamental the pa
of the total energy that is in the second harmonic plays
role of a nonlinear loss that corresponds to two-photon
sorption in the case of a cubic nonlinearity with a comple
valued coefficient@12#. The optical response of the resonat
is described by the well-established modal theory@13,14#.
Compared with models based on forward- and backwa
561063-651X/97/56~4!/4803~6!/$10.00
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propagating fields, this simplifies the analysis considera
It was shown that the modal theory decribes the respons
an arbitrary planar resonator appropriately, provided the
nesse is sufficiently high and thus the response is gove
by a single resonance.

This paper is organized as follows. After the introducti
of the basic equations in Sec. II we consider the stability
plane-wave solutions against spatially homogeneous
modulated pertubations in Sec. III. The formation of patte
is examined in Sec. IV. Finally, Sec. V concludes the pap

II. BASIC EQUATIONS

We consider a Fabry-Pe´rot resonator with a quadraticall
nonlinear medium. Here the frequency of the incident fun
mental field should be close to a resonance. Also, the ge
ated second harmonic should interact with another resona
at approximately twice the fundamental frequency. Thus
system is resonant for both fields and a modal theory can
applied. In this way the field profile perpendicular to th
resonator is assumed to be stationary and enters the evol
equations for the transmitted fields only via overlap integr
in the effective nonlinear coefficients. The absolute value
the overlap integrals depends critically on the phase m
match between the fundamental and second harmonics
their mode profiles. The appropriately scaled evolution eq
tions for the slowly varying envelopesA1 and A2 of the
transmitted fields of the fundamental and second harmo
are derived analogously to the case of a cubic nonlinearit
@14#

i
]A1

]T
1

]2A1

]X2 1
]2A1

]Y2 1~D11 i !A11A1* A25E, ~1a!

i
]A2

]T
1aS ]2A2

]X2 1
]2A2

]Y2 D1~D21 ig!A21A1
250, ~1b!

whereD1 andD2 are the detunings of the two fields from th
corresponding resonances. Though they have nothing to
with the common phase mismatch, they play a similar role
Eqs.~1!. The timeT is scaled in terms of the photon lifetim
at the fundamental frequency and the spatial variablesX and
Y in terms of the square root of the product of the velocity
light, photon lifetime, and fundamental wavelength. Thusg
is the ratio of the photon lifetimes anda half the ratio
4803 © 1997 The American Physical Society
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4804 56C. ETRICH, U. PESCHEL, AND F. LEDERER
of the refractive indices corresponding to the fundamen
and second harmonics. Throughout the analysis we ass
a51/2, which is a very good approximation for realist
configurations. The input field of the fundamental isE,
where an arbitrary phase can be transformed away.

The fields are scaled in terms of the effective nonlin
coefficients arising from the above-mentioned overlap in
grals and the nonlinear material coefficients. For large ab
lute values of the detuning of the second harmonic differ
signs result in effective focusing (D2,0) or defocusing
(D2.0) behavior. This is evident from neglecting the d
rivatives in Eq.~1b! for largeD2 and substituting forA2 in
Eq. ~1a!, leading to a cubic term there~see below!.

III. HOMOGENEOUS STEADY-STATE SOLUTIONS
AND THEIR STABILITY

As a prerequisite for the formation of patterns we co
sider the homogeneous steady-state or plane-wave solu
An0 , n51,2, of Eqs.~1! and their stability against spatiall
homogeneous and modulated perturbations. The plane-w
solutions are obtained by equating the derivatives in Eqs.~1!
to zero@15#. This yields for the fields

S D11 i 2
1

D21 ig
uA10u2DA105E, ~2a!

~D21 ig!A2052A10
2 . ~2b!

From this the equations for the moduli of the fields are

@ uA10u412~g2D1D2!uA10u21~D1
211!~D2

21g2!#uA10u2

5~D2
21g2!E2, ~3a!

uA20uAD2
21g25uA10u2. ~3b!

For certain parameter ranges Eq.~3a! has three real solution
for uA10u2, which is a prerequisite for bistable behavior~see
below!. Equation~2a! is reminiscent of the case of a cub
nonlinearity with a complex-valued nonlinear coefficient, t
imaginary part of which describes two-photon absorpt
@12#. Here it corresponds to a nonlinear loss of the fun
mental due to the part of the total energy that is carried
the second harmonic and leaks out of the cavity becaus
radiation damping~proportional tog!.

A. Homogeneous stability

To determine the stability against spatially homogene
perturbations, i.e., omitting the spatial derivatives in Eqs.~1!,
we substituteAn5An01dAnelT into Eqs.~1! and linearize
with respect todAn0 . This leads to an eigenvalue proble
for the propagation constantl with the characteristic equa
tions

l41a3l31a2l21a1l1a050 , ~4!

where
l
me

r
-
o-
t

-

-
ns

ve

n
-
y
of

s

a352~11g!,

a254~ uA10u21g!2uA20u21D1
2111D2

21g2,

a152@2~11g!uA10u22guA20u21g~D1
211!1D2

21g2#,

a054~ uA10u21g2D1D2!uA10u22~D2
21g2!uA20u2

1~D1
211!~D2

21g2!.

Thus a plane-wave solution is unstable if Eq.~4! has a solu-
tion with Rel.0. A solution Rel50, with either Iml50 or
Im lÞ0, marks a critical point in parameter space. He
there may be a transition from stable to unstable behav
Equation~4! has a solutionl50 if

uA10u25
2

3
~D1D22g!6

1

3
A~D1D22g!223~gD11D2!2.

~5!

This corresponds to a pair of limit points, which mark th
boundaries of a bistable domain, given that

FIG. 1. ~a! Loci of limit points ~solid line! and Hopf bifurcations
~dashed line! in the (D2 ,uA10u2) plane for plane-wave solution
~D154 andg50.6! and ~b! bifurcation diagram corresponding t
the vertical dashed line in~a! ~D254, solid lines correspond to
homogeneously stable and dashed lines to homogeneously uns
plane-wave solutions; filled circles mark the maxima of stable
riodic solutions and the square a Hopf bifurcation!.
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56 4805PATTERN FORMATION IN INTRA-CAVITY SECOND- . . .
uD2u~ uD1u2) !

)uD1u11
.g, D1D2.0. ~6!

From Eq.~6! an additional condition is obviouslyuD1u.).
Furthermore, the plane-wave solutions destabilize via a H
bifurcation, which corresponds to a solution of the charac
istic equation with Rel50, ImlÞ0. Thus substituting
l56 ivc into the characteristic equation and separating r
and imaginary parts, the Hopf bifurcation is determin
through

uA10u25
g

2~11g!2 H uA20u22@~11g!21~D11D2!2#

14D2~D11D2!

14D2
2 ~11g!21~D11D2!2

uA20u22@~11g!21~D11D2!2# J , ~7a!

vc
25a1 /a3 , ~7b!

where the square of the frequencyvc with which the peri-
odic solutions emanate from the Hopf bifurcation must
positive. Note that above condition is independent
whether the resonator is driven by the fundamental or sec
harmonic. Thus it holds also for the case of the OPO. In
case we have from Eq.~3b! uA10u25uA20uAD2

21g2. Thus the
Hopf bifurcation can be obtained as an intersection poin
the two curves defined by Eqs.~3b! and ~7a!. From this we
always found~numerically! two intersection points with one
yielding a positivevc

2 , thus leaving one Hopf bifurcation.
A typical example of the loci of critical points, i.e., limi

points and Hopf bifurcations, in parameter space@in the
(D2 ,uA10u2) plane, which can be directly transformed to t
(D2 ,E) plane by means of Eq.~3a!# is displayed in Fig. 1
together with a bifurcation diagram in terms of the cont
parameterE. If Eqs. ~3a! yield three real solutions for a

FIG. 2. ~a! Rel and~b! square root of the total relative intensit
@DI 5*0

Pdj(uA12A10u21uA22A20u2), P period# of traveling-wave
solutions versusk2 for various values ofE @D152, D252, g50.6,
andk52p/P in ~a!#.
pf
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e
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certain range ofE, the homogeneous steady-state solutio
show bistable behavior, destabilizing at the first limit po
and stabilizing at the second. They destabilize again a
Hopf bifurcation@cf. Fig. 1~b! and dashed line in Fig. 1~a!#.
The plane-wave solutions are then stable in domain I of F
1~a! and are unstable due to limit points in domain II and d
to a Hopf bifurcation in domain III. The stability behavior o
the periodic solutions bifurcating from the Hopf bifurcatio
is very complex and not considered here@8#. If Eqs.~3! yield
only one real solution for allE, the homogeneous stead
states destabilize via a Hopf bifurcation.

B. Modulational instabilities

Here we determine the stability of the homogeneo
steady-state solutions against perturbationsAn5An0
1dAnelTeikXX1 ikYY, i.e., taking into account spatial modu
lations. We proceed in the same way as in Sec. III A, line
izing Eqs.~1! with respect todAn0 . The corresponding char
acteristic equation can be obtained from Eqs.~4! by
replacing D1 and D2 by D12k2 and D22ak2 with
k25kX

21kY
2 . Thus the coefficients become functions ofk2,

FIG. 3. Loci of critical points@Rel(k2)50# in the (D2 ,uA10u2)
plane for plane-wave solutions~D154 and g50.6!. Solid lines,
Iml(k2)50; dashed lines, Iml(k2)Þ0; thin lines,k50; bold lines,
kÞ0.

FIG. 4. Loci of critical points@Rel(k2)50# in the (D2 ,uA10u2)
plane for plane-wave solutions~D152 andg50.6!. Graphical con-
ventions are as in Fig. 3.
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4806 56C. ETRICH, U. PESCHEL, AND F. LEDERER
i.e., an5an(k2). Correspondingly, the solutions of the cha
acteristic equation arel5l(k2). We consider destabiliza
tion of the plane-wave solutions at finitek. As for k50 there
are two cases: Rel(k2)50 with either Iml(k2)Þ0 or
Iml(k2)50.

Asymptotically, fork2→`, the solutions of the characte
istic equation are

l1,2~k2!5216 i S k21
a~aD11D2!

22a2 D1O~1/k2!,
~8!

l3,4~k2!52g6 i S k27
aD11D2

122a2 D1O~1/k2!,

i.e., the plane-wave solutions are stable for sufficiently la
k. Thus a plane-wave solution that is stable fork50 @i.e.,
Rel(0),0] destabilizes or becomes modulationally unsta
where a local maximum of the corresponding Rel(k2) be-
comes positive@Fig. 2~a!#. Adding the loci in paramete
space of these points to the example of Fig. 1~a! results in
Fig. 3, leaving the plane-wave solutions stable in domai
An example for a smaller value ofD1 is displayed in Fig. 4.
Here the domain of bistability is at largeD2 and thus outside
the figure. Figures 3 and 4 depict typical situations in para
eter space. The critical points where the modulational in
bility sets in with Iml(k2)50 ~bold solid lines! can easily be
calculated from

FIG. 5. Loci of Hopf bifurcations of Eqs.~10! ~a! in the (E,v)
plane and~b! in the (E,P) plane forD152, D252, andg50.6.
e

e

I.

-
a-

a0~k2!50,
da0

dk2 50, ~9!

solving for ~real! uA10u2 andk2 after substitution of Eq.~3b!
and keeping the system parameters fixed. The first condi
arises froml(k2)50 @remember Iml(k2)50# and the second
refers to the destabilization at the maximum mention
above. Concerning Fig. 3, it should be noted that the pla
wave bistability is prevented due to a modulationally u
stable upper branch.

IV. PATTERN FORMATION

Where the homogeneous steady states become mo
tionally unstable we expect patterns to develope: either tr
eling waves or roll patterns described by one vector (kX ,kY)
or hexagons described by two linearly independent vec
(kX ,kY). Stable traveling waves may develop where t
plane-wave solutions destabilize with Iml(k2)Þ0 ~cf. bold
dashed lines in Figs. 3 and 4! and stable stationary pattern
where they destabilize with Iml(k2)50 ~cf. bold solid lines
in Figs. 3 and 4!.

We first consider the case of traveling waves and r
patterns, assumingkX5k andkY50. Traveling waves ema
nate from a critical point Rel(k2)50 with velocity

FIG. 6. Amplitude gray scale plots of the~a! fundamental and
~b! second harmonics forD152, D252, g50.6, andE53.6 dis-
playing a traveling-wave solution.
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56 4807PATTERN FORMATION IN INTRA-CAVITY SECOND- . . .
v5Iml(k2)/k ~remember An5An01dAneik@X1Iml(k2)/kT#!.
Roll patterns are included as a special case and correspo
v50. Introducing the velocityv of traveling waves, they can
be calculated as periodic solutions from

]2A1

]j2 2 iv
]A1

]j
1~D11 i !A11A1* A25E,

~10!

a
]2A2

]j2 2 iv
]A2

]j
1~D21 ig!A21A1

250,

which derives from Eqs.~1! assuming solutions with
j5X2vT. With respect to Eqs.~10!, the bifurcation behav-
ior of traveling-wave solutions can be treated in terms
Hopf bifurcations in the usual way~as fork50 in Sec. III,
replacing the former timeT by j!. Such a Hopf bifurcation of
Eqs. ~10! corresponds to a critical point Rel(k2)50 of the
original equations. Figure 5~a! displays the loci of Hopf bi-
furcations in the (E,v) plane. As pointed out above, at the
points the velocity isv5Iml(k2)/k @in Fig. 5~a! only positive
velocities are displayed#. The points where a local maximum
of the corresponding Rel(k2) becomes positive are limi
points in Fig. 5~a!, i.e., if the control parameterE is in-
creased beyond the limit point first encountered, the pla
wave solutions destabilize there. This happens with eit
Iml(k2)Þ0 (vÞ0) or Iml(k2)50 (v50). Note that in the
case of roll patterns (v50) we have a limit point of two

FIG. 7. Amplitude gray scale plots of the~a! fundamental and
~b! second harmonics forD152, D2521, g50.6, andE56 dis-
playing a hexagon pattern.
to

f

e-
er

degenerate branches. This becomes obvious if the perioP
of the periodic solutions of Eqs.~10! is used instead ofv
@Fig. 5~b!#.

Fixing all parameters of Eqs.~1!, for vÞ0 the two Hopf
bifurcations beyond the limit point are connected by a bran
of traveling-wave solutions~the control parameter along th
branch isv, each value ofv corresponding to a certain pe
riod P of the traveling waves!. They bifurcate from these
points with periodP52p/k @k from Rel(k2)50; cf. Fig.
5~b! with the velocity replaced by the period#. Examples of
branches of traveling waves are shown in Fig. 2~b! for dif-
ferent values ofE, together with Rel(k2) in Fig. 2~a!. Here,
for periodic solutions we definedk52p/P. For roll patterns
the situation is similar. For fixedE each of the degenerat

FIG. 8. Bifurcation diagram displaying the amplitude of the fu
damental versus the control parameterE for D152, D2521, and
g50.6. The rhombs represent the maximum available amplitud
hexagon patterns and the square marks the point where the m
lational instability sets in.

FIG. 9. Amplitude gray scale plots of the~a! fundamental and
~b! second harmonics forD1524, D2521.8, g50.6, and
E55.25 displaying a hexagon pattern
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4808 56C. ETRICH, U. PESCHEL, AND F. LEDERER
branches corresponds to a bifurcation point with differ
periodP @Fig. 5~b!#. The Hopf bifurcations described in Se
III ~k50, homogeneous solutions! correspond tov5`,
P5` ~cf. vertical dashed lines in Fig. 5!.

Equations~10! do not yield the stability of the periodic
solutions. This was tested by solving Eqs.~1! numerically.
For the numerical simulations of pattern formation a sp
step fast Fourier transform algorithm with periodic bounda
conditions was used. Typical grid sizes were 1283128
points. In the example of Fig. 2~a! we found stable traveling
wave solutions around the maximum of Rel(k2) in k space.
Increasing the control parameterE further, all traveling-
wave solutions are unstable beyond a critical value ofE. An
example of a stable traveling-wave solution is displayed
Fig. 6. In the case of Fig. 3 there seem to be no sta
traveling-wave solutions.

Concerning roll patterns, they seem to be unstable.
stead we found stable hexagonal patterns~for an example see
Fig. 7! beyond the points where the plane-wave solutio
destabilize with Iml(k2)50. Figure 8 displays an example o
a branch of hexagonal patterns~plotted are the maximum
amplitudes available!. Here the hexagonal patterns seem
bifurcate with infinitesimal amplitude from the point whe
the plane-wave solutions become modulationally unsta
The intervals ink space where we find stable haxagon
patterns are shifted from the point where Rel(k2)
@Rel(k2).0# has its local maximum and are outside the
terval with Rel(k2).0 close to the point where the modul
tional instability sets in. This seems to be similar to the fin
ings for roll patterns in@11#. The situation is different for
A

-
d

B

d
et
t

-
y

n
le

-

s

e.
l

-

-

D1,0. For sufficiently negativeD2 ~case of effective focus-
ing! we find strongly localized hexagonal patterns that ha
finite amplitude just beyond the point where the plane-wa
solutions become modulationally unstable~Fig. 9!. The peak
intensity of the second harmonic is considerably larger
this case.

V. CONCLUSION

We determined the stability behavior in parameter sp
of the homogeneous steady-state solutions. Neglecting
tial modulations, we found them always destabilizing via
Hopf bifurcation. Oscillating instabilities seem to play a
essential role in resonators with a quadratically nonlin
medium. Taking into account spatial modulations, the Ho
bifurcations lead to traveling-wave solutions. Increasing
input power, they destabilize, resulting in more complica
motion. Roll patterns were always found to be unstable.
stead hexagons evolve. In the case of effective focusing t
are extremely localized and have finite amplitude just
yond the point where the modulational instability sets in. T
existence of the stable spatially modulated structures
demonstrated by means of two-dimensional numerical sim
lations. Modulational instabilities influence the plane-wa
solutions considerably. There is no plane-wave bistabi
because we always found the upper branch of the bist
curve to be modulationally unstable. Thus switching fro
one homogeneous steady-state solution to another is not
sible.
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